Conceito médio móvel auto intensivo
Eu tentei descobrir como escrever um tipo de Quora responde a esta pergunta. Na verdade, é mais fácil explicar a matemática que explica o que é. Mas, vamos fazer uma tentativa. Primeiro, o ARMA faz parte de um conjunto de técnicas para analisar dados que são seqüenciais, geralmente com o tempo como uma variável independente. (No entanto, usei as técnicas para analisar a data em que o tempo não era um fator). Como os dados geralmente são levados sequencialmente no tempo em um determinado intervalo, os próprios dados são chamados de séries temporais. O objetivo dessas técnicas é encontrar uma equação que explique os dados e faça uma previsão dos dados. Essas previsões são usadas em estatística, economia, gestão industrial e em sistemas de controle. O próprio ARMA é uma combinação de duas das técnicas: auto regressiva (AR) e média móvel (MA). Primeiro considerando a parte regressiva, esta é simplesmente uma curva linear adequada a um conjunto de pontos de dados. À medida que um novo ponto de dados entra, a regressão é movida para cima um ponto e o ponto de dados mais antigo é descartado. O comprimento dos pontos de dados considerados é notado como AR (4) onde 4 dos últimos pontos de dados são considerados. Os coeficientes da regressão são pesos ou parâmetros da equação e geralmente são encontrados usando regressão de mínimos quadrados. A parte da média móvel faz exatamente a mesma coisa, exceto o erro entre o valor real e o valor previsto, em vez dos pontos de dados. Assim, MA (3) seria uma média ponderada do erro atual e os dois últimos erros. Novamente, os pesos são geralmente encontrados subtraindo a média do ponto de dados e, em seguida, usando a regressão de mínimos quadrados para determinar os pesos. Quando estas duas técnicas são juntas por adição, o resultado seria um modelo ARMA (4,3). Existem muitas extensões para estas técnicas básicas de AR e MA, incluindo termos de integração para um modelo ARIMA, usando termos não-lineares para um modelo NARMA, usando variáveis exógenas para formar modelos ARX, MAX, ARMAX e NARMAX. Outro conjunto pertencente a essas técnicas são os modelos ARCH e GARCH (formas avançadas incluem, também, termos integrais e não-lineares), que usam termos que representam medidas estatísticas. EDITAR AGREGADO: Veja o meu comentário abaixo sobre bondade de ajuste. Há algo mais sobre isso que acabei de pensar quando estava deitada. O ARMA e outros modelos desse tipo muitas vezes são muito bons em fazer previsões um passo adiante. No entanto, muitas vezes falham miseravelmente ao fazerem estimativas de vários passos. Eu acho isso porque o próximo ponto provavelmente está limitado limitado em quanto pode variar do ponto anterior na maioria dos casos. Mas o erro em ir mais longe é pelo menos aditivo e pode ser multiplicativo ou exponencial, resultando na perda de previsão mais e mais longe dos dados coletados reais. Assim, o usuário tem cuidado 861 Visualizações middot View Upvotes middot Não é para Reprodução. Um RIMA significa modelos Autoregressive Integrated Moving Average. Univariado (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série inteiramente baseada em sua própria inércia. Sua principal aplicação é a previsão de curto prazo que requer pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes, chamado Box-Jenkins (após os autores originais), o ARIMA geralmente é superior às técnicas de suavização exponencial quando os dados são razoavelmente longos e a correlação entre observações passadas é estável. Se o dado for curto ou altamente volátil, algum método de suavização poderá ser melhor. Se você não tem pelo menos 38 pontos de dados, você deve considerar algum outro método que o ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaria. A estacionarização implica que a série permanece em um nível bastante constante ao longo do tempo. Se houver uma tendência, como na maioria das aplicações econômicas ou comerciais, seus dados NÃO são estacionários. Os dados também devem mostrar uma variância constante em suas flutuações ao longo do tempo. Isso é facilmente visto com uma série que é fortemente sazonal e cresce a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem essas condições de estacionaridade que estão sendo atendidas, muitos dos cálculos associados ao processo não podem ser computados. Se um gráfico gráfico dos dados indicar não-estacionária, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não estacionária em uma estacionária. Isso é feito subtraindo a observação no período atual do anterior. Se essa transformação for feita apenas uma vez para uma série, você diz que os dados foram primeiro diferenciados. Este processo elimina essencialmente a tendência se sua série estiver crescendo a uma taxa bastante constante. Se estiver crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferenciar os dados novamente. Seus dados seriam então diferenciados em segundo lugar. As autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número especificado de períodos separados estão correlacionados um com o outro ao longo do tempo. O número de períodos separados geralmente é chamado de atraso. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores de 1 período separado estão correlacionados entre si ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados separados por dois períodos estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo a -1 implica uma alta correlação negativa. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de auto-correlação para uma determinada série em diferentes atrasos. Isso é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em uma série de tempo estacionária como uma função do que são chamados parâmetros de média autorregressiva e móvel. Estes são referidos como parâmetros AR (autoregessivos) e MA (médias móveis). Um modelo AR com apenas 1 parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo da ordem 1 X (t-1) a série temporal atrasou 1 período E (T) o termo de erro do modelo Isso significa simplesmente que qualquer valor X (t) determinado pode ser explicado por alguma função do seu valor anterior, X (t-1), além de algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse de .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 há algum tempo. Claro, a série pode estar relacionada com mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente precedentes, X (t-1) e X (t-2), além de algum erro aleatório E (t). Nosso modelo agora é um modelo autoregressivo de ordem 2. Modelos médios em movimento: um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora esses modelos pareçam muito parecidos com o modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros médios em movimento relacionam o que ocorre no período t apenas com os erros aleatórios ocorridos em períodos passados, ou seja, E (t-1), E (t-2), etc., em vez de X (t-1), X ( T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo de MA pode ser escrito da seguinte forma. X (t) - B (1) E (t-1) E (t) O termo B (1) é chamado de MA da ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e geralmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima simplesmente diz que qualquer valor dado de X (t) está diretamente relacionado apenas ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso de modelos autoregressivos, os modelos de média móvel podem ser estendidos para estruturas de ordem superior que cobrem diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a criação de modelos que incorporam parâmetros de média autorregressiva e móvel em conjunto. Estes modelos são frequentemente referidos como modelos mistos. Embora isso faça para uma ferramenta de previsão mais complicada, a estrutura pode simular a série melhor e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas em parâmetros AR ou MA - nem ambos. Os modelos desenvolvidos por esta abordagem geralmente são chamados de modelos ARIMA porque eles usam uma combinação de autoregressivo (AR), integração (I) - referente ao processo reverso de diferenciação para produzir as operações de previsão e média móvel (MA). Um modelo ARIMA geralmente é declarado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você possui um modelo autoregressivo de segunda ordem com um componente de média móvel de primeira ordem, cuja série foi diferenciada uma vez para induzir a estacionaria. Escolhendo a Especificação Direita: O principal problema na caixa clássica da Caixa-Jenkins está tentando decidir qual a especificação ARIMA para usar - isto é. Quantos parâmetros AR e ou MA devem incluir. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Dependia da avaliação gráfica e numérica da autocorrelação da amostra e das funções de autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que se parecem de uma certa maneira. No entanto, quando você aumenta a complexidade, os padrões não são facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isso significa que erros de amostragem (outliers, erro de medição, etc.) podem distorcer o processo de identificação teórica. É por isso que a modelagem ARIMA tradicional é uma arte e não uma ciência. Introdução a ARIMA: modelos não-sazonais. Equação de previsão ARIMA (p, d, q): os modelos ARIMA são, em teoria, a classe mais geral de modelos para prever uma série temporal que Pode ser feito para ser 8220stationary8221 por diferenciação (se necessário), talvez em conjunção com transformações não-lineares, como registro ou desinflação (se necessário). Uma variável aleatória que é uma série temporal é estacionária se suas propriedades estatísticas são todas constantes ao longo do tempo. Uma série estacionária não tem tendência, suas variações em torno de sua média têm uma amplitude constante, e ela muda de forma consistente. Ou seja, seus padrões de tempo aleatório de curto prazo sempre parecem os mesmos em um sentido estatístico. A última condição significa que suas autocorrelações (correlações com seus próprios desvios anteriores da média) permanecem constantes ao longo do tempo, ou de forma equivalente, que seu espectro de potência permanece constante ao longo do tempo. Uma variável aleatória deste formulário pode ser vista (como de costume) como uma combinação de sinal e ruído, e o sinal (se um é aparente) pode ser um padrão de reversão média rápida ou lenta, ou oscilação sinusoidal, ou alternância rápida no signo , E também poderia ter um componente sazonal. Um modelo ARIMA pode ser visto como um 8220filter8221 que tenta separar o sinal do ruído, e o sinal é então extrapolado para o futuro para obter previsões. A equação de previsão de ARIMA para uma série de tempo estacionária é uma equação linear (isto é, regressão) em que os preditores consistem em atrasos da variável dependente ou atrasos dos erros de previsão. Isto é: valor previsto de Y uma constante ou uma soma ponderada de um ou mais valores recentes de Y e uma soma ponderada de um ou mais valores recentes dos erros. Se os preditores consistem apenas em valores atrasados de Y. é um modelo autoregressivo puro (8220 self-regressed8221), que é apenas um caso especial de um modelo de regressão e que pode ser equipado com o software de regressão padrão. Por exemplo, um modelo autoregressivo de primeira ordem (8220AR (1) 8221) para Y é um modelo de regressão simples no qual a variável independente é apenas Y rezagada em um período (LAG (Y, 1) em Statgraphics ou YLAG1 em RegressIt). Se alguns dos preditores são atrasos dos erros, um modelo ARIMA não é um modelo de regressão linear, porque não existe nenhuma maneira de especificar o erro 8222 do último período8217s como uma variável independente: os erros devem ser computados numa base de período a período Quando o modelo é ajustado aos dados. Do ponto de vista técnico, o problema com o uso de erros atrasados como preditores é que as previsões do modelo8217s não são funções lineares dos coeficientes. Mesmo que sejam funções lineares dos dados passados. Assim, os coeficientes nos modelos ARIMA que incluem erros atrasados devem ser estimados por métodos de otimização não-linear (8220hill-climbing8221) em vez de apenas resolver um sistema de equações. O acrônimo ARIMA significa Auto-Regressive Integrated Moving Average. Lags da série estacionada na equação de previsão são chamados quota de termos degressivos, os atrasos dos erros de previsão são chamados de termos de média de quotmoving, e uma série de tempo que precisa ser diferenciada para ser estacionada é dito ser uma versão quotintegratedquot de uma série estacionária. Modelos aleatórios e de tendência aleatória, modelos autoregressivos e modelos de suavização exponencial são todos os casos especiais de modelos ARIMA. Um modelo ARIMA não-sazonal é classificado como quotARIMA (p, d, q) quot model, onde: p é o número de termos autorregressivos, d é o número de diferenças não-sazonais necessárias para a estacionaridade e q é o número de erros de previsão atrasados em A equação de predição. A equação de previsão é construída da seguinte forma. Primeiro, digamos a d ª diferença de Y. o que significa: Observe que a segunda diferença de Y (o caso d2) não é a diferença de 2 períodos atrás. Em vez disso, é a primeira diferença da primeira diferença. Que é o análogo discreto de uma segunda derivada, isto é, a aceleração local da série em vez da sua tendência local. Em termos de y. A equação geral de previsão é: Aqui, os parâmetros de média móvel (9528217s) são definidos de modo que seus sinais são negativos na equação, seguindo a convenção introduzida pela Box e Jenkins. Alguns autores e software (incluindo a linguagem de programação R) os definem de modo que eles tenham sinais de mais. Quando os números reais estão conectados à equação, não há ambigüidade, mas é importante saber qual a convenção que seu software usa quando você está lendo a saída. Muitas vezes, os parâmetros são indicados por AR (1), AR (2), 8230 e MA (1), MA (2), 8230 etc. Para identificar o modelo ARIMA apropriado para Y. você começa por determinar a ordem de diferenciação (D) a necessidade de estacionar a série e remover as características brutas da sazonalidade, talvez em conjunto com uma transformação estabilizadora de variância, como registro ou desinflação. Se você parar neste ponto e prever que a série diferenciada é constante, você ajustou apenas uma caminhada aleatória ou modelo de tendência aleatória. No entanto, a série estacionada ainda pode ter erros autocorrelacionados, sugerindo que alguns números de AR (p 8805 1) e outros termos do número MA (q 8805 1) também são necessários na equação de previsão. O processo de determinação dos valores de p, d e q que são melhores para uma determinada série temporal será discutido em seções posteriores das notas (cujos links estão no topo desta página), mas uma prévia de alguns tipos Dos modelos ARIMA não-sazonais que são comumente encontrados são dados abaixo. Modelo autoregressivo de primeira ordem ARIMA (1,0,0): se a série estiver estacionada e autocorrelada, talvez possa ser predita como um múltiplo de seu próprio valor anterior, além de uma constante. A equação de previsão neste caso é 8230, que é regredida por si mesma atrasada por um período. Este é um modelo 8220ARIMA (1,0,0) constante8221. Se a média de Y for zero, então o termo constante não seria incluído. Se o coeficiente de inclinação 981 1 for positivo e menor que 1 em magnitude (deve ser inferior a 1 em magnitude se Y estiver estacionário), o modelo descreve o comportamento de reversão média em que o valor do período 8217 seguinte deve ser previsto 981 1 vez como Muito longe da média, já que este valor do período 8217s. Se 981 1 é negativo, ele prevê comportamento de reversão média com alternância de sinais, ou seja, ele também prevê que Y estará abaixo do período médio seguinte se estiver acima da média deste período. Em um modelo autoregressivo de segunda ordem (ARIMA (2,0,0)), haveria um termo Y t-2 também à direita e assim por diante. Dependendo dos sinais e das magnitudes dos coeficientes, um modelo ARIMA (2,0,0) pode descrever um sistema cuja reversão média ocorre de forma sinusoidalmente oscilante, como o movimento de uma massa em uma mola sujeita a choques aleatórios . ARIMA (0,1,0) caminhada aleatória: se a série Y não é estacionária, o modelo mais simples possível para isso é um modelo de caminhada aleatória, que pode ser considerado como um caso limitante de um modelo AR (1) no qual o autorregressivo O coeficiente é igual a 1, ou seja, uma série com reversão média infinitamente lenta. A equação de predição para este modelo pode ser escrita como: onde o termo constante é a mudança média de período para período (ou seja, a derivação de longo prazo) em Y. Esse modelo poderia ser ajustado como um modelo de regressão sem intercepção em que o A primeira diferença de Y é a variável dependente. Uma vez que inclui (apenas) uma diferença não-sazonal e um termo constante, esta é classificada como um modelo quotARIMA (0,1,0) com constante. O modelo aleatório-sem-atrasado seria um ARIMA (0,1, 0) modelo sem constante ARIMA (1,1,0) modelo autoregressivo de primeira ordem diferenciado: se os erros de um modelo de caminhada aleatória forem autocorrelacionados, talvez o problema possa ser corrigido adicionando um atraso da variável dependente à equação de predição - - é Ao regredir a primeira diferença de Y em si mesma atrasada por um período. Isso produziria a seguinte equação de predição: que pode ser rearranjada para Este é um modelo autoregressivo de primeira ordem com uma ordem de diferenciação não-sazonal e um termo constante - ou seja. Um modelo ARIMA (1,1,0). ARIMA (0,1,1) sem alisamento exponencial constante e simples: outra estratégia para corrigir erros autocorrelacionados em um modelo de caminhada aleatória é sugerida pelo modelo de suavização exponencial simples. Lembre-se de que, para algumas séries temporais não estacionárias (por exemplo, as que exibem flutuações ruidosas em torno de uma média variando lentamente), o modelo de caminhada aleatória não funciona, bem como uma média móvel de valores passados. Em outras palavras, ao invés de tomar a observação mais recente como a previsão da próxima observação, é melhor usar uma média das últimas observações para filtrar o ruído e estimar com maior precisão a média local. O modelo de suavização exponencial simples usa uma média móvel ponderada exponencialmente de valores passados para alcançar esse efeito. A equação de predição para o modelo de suavização exponencial simples pode ser escrita em várias formas matematicamente equivalentes. Um dos quais é o chamado formulário 8220error correction8221, em que a previsão anterior é ajustada na direção do erro que ele fez: porque e t-1 Y t-1 - 374 t-1 por definição, isso pode ser reescrito como : Que é uma equação de previsão ARIMA (0,1,1) sem constante com 952 1 1 - 945. Isso significa que você pode ajustar um alisamento exponencial simples especificando-o como um modelo ARIMA (0,1,1) sem Constante e o coeficiente estimado MA (1) corresponde a 1-menos-alfa na fórmula SES. Lembre-se que, no modelo SES, a idade média dos dados nas previsões de 1 período anterior é de 1 945. O que significa que tenderão a atrasar tendências ou pontos de viragem em cerca de 1 945 períodos. Segue-se que a idade média dos dados nas previsões de 1 período de um ARIMA (0,1,1) - sem modelo constante é 1 (1 - 952 1). Assim, por exemplo, se 952 1 0,8, a idade média é 5. Como 952 1 aborda 1, o ARIMA (0,1,1) - sem modelo constante torna-se uma média móvel de muito longo prazo, e como 952 1 Aproxima-se de 0, torna-se um modelo de caminhada aleatória sem drift. What8217s é a melhor maneira de corrigir a autocorrelação: adicionar termos AR ou adicionar termos MA. Nos dois modelos anteriores discutidos acima, o problema dos erros auto-correlacionados em um modelo de caminhada aleatória foi consertado de duas maneiras diferentes: adicionando um valor atrasado da série diferenciada Para a equação ou adicionando um valor atrasado do erro de previsão. Qual abordagem é melhor Uma regra de ouro para esta situação, que será discutida com mais detalhes mais adiante, é que a autocorrelação positiva geralmente é melhor tratada adicionando um termo AR ao modelo e a autocorrelação negativa geralmente é melhor tratada adicionando um Termo MA. Nas séries temporais econômicas e econômicas, a autocorrelação negativa surge frequentemente como um artefato da diferenciação. (Em geral, a diferenciação reduz a autocorrelação positiva e pode até causar uma mudança de autocorrelação positiva para negativa). Assim, o modelo ARIMA (0,1,1), em que a diferenciação é acompanhada por um termo MA, é mais freqüentemente usado do que um Modelo ARIMA (1,1,0). ARIMA (0,1,1) com alisamento exponencial constante e constante: ao implementar o modelo SES como modelo ARIMA, você realmente ganha alguma flexibilidade. Em primeiro lugar, o coeficiente estimado de MA (1) pode ser negativo. Isso corresponde a um fator de alisamento maior que 1 em um modelo SES, que normalmente não é permitido pelo procedimento de montagem do modelo SES. Em segundo lugar, você tem a opção de incluir um termo constante no modelo ARIMA, se desejar, para estimar uma tendência média não-zero. O modelo ARIMA (0,1,1) com constante tem a equação de previsão: as previsões de um período anteriores deste modelo são qualitativamente similares às do modelo SES, exceto que a trajetória das previsões de longo prazo é tipicamente uma Linha inclinada (cuja inclinação é igual a mu) em vez de uma linha horizontal. ARIMA (0,2,1) ou (0,2,2) sem alisamento exponencial linear constante: modelos de alisamento exponencial linear são modelos ARIMA que utilizam duas diferenças não-sazonais em conjunto com os termos MA. A segunda diferença de uma série Y não é simplesmente a diferença entre Y e ela mesma atrasada por dois períodos, mas é a primeira diferença da primeira diferença - isto é. A mudança de mudança de Y no período t. Assim, a segunda diferença de Y no período t é igual a (Y t-Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Uma segunda diferença de uma função discreta é análoga a uma segunda derivada de uma função contínua: mede a quotaccelerationquot ou quotcurvaturequot na função em um determinado ponto no tempo. O modelo ARIMA (0,2,2) sem constante prediz que a segunda diferença da série é igual a uma função linear dos dois últimos erros de previsão: o que pode ser rearranjado como: onde 952 1 e 952 2 são o MA (1) e MA (2) coeficientes. Este é um modelo de suavização exponencial linear geral. Essencialmente o mesmo que o modelo Holt8217s, e o modelo Brown8217s é um caso especial. Ele usa médias móveis exponencialmente ponderadas para estimar um nível local e uma tendência local na série. As previsões de longo prazo deste modelo convergem para uma linha reta cuja inclinação depende da tendência média observada no final da série. ARIMA (1,1,2) sem alisamento exponencial linear constante de tendência amortecida. Este modelo está ilustrado nos slides que acompanham os modelos ARIMA. Ele extrapola a tendência local no final da série, mas acha-se em horizontes de previsão mais longos para introduzir uma nota de conservadorismo, uma prática que tem suporte empírico. Veja o artigo em quotPor que a Tendência Damped funciona por Gardner e McKenzie e o artigo do quotGolden Rulequot de Armstrong et al. para detalhes. Em geral, é aconselhável manter os modelos em que pelo menos um de p e q não é maior do que 1, ou seja, não tente se ajustar a um modelo como o ARIMA (2,1,2), pois isso provavelmente levará a uma superposição E quotcommon-factorquot questões que são discutidas em mais detalhes nas notas sobre a estrutura matemática dos modelos ARIMA. Implementação da planilha: os modelos ARIMA, como os descritos acima, são fáceis de implementar em uma planilha eletrônica. A equação de predição é simplesmente uma equação linear que se refere a valores passados de séries temporais originais e valores passados dos erros. Assim, você pode configurar uma planilha de previsão ARIMA armazenando os dados na coluna A, a fórmula de previsão na coluna B e os erros (dados menos previsões) na coluna C. A fórmula de previsão em uma célula típica na coluna B seria simplesmente Uma expressão linear que se refere a valores nas linhas precedentes das colunas A e C, multiplicadas pelos coeficientes apropriados de AR ou MA armazenados em células em outro lugar na planilha.
Comments
Post a Comment